

Plant Hormones:

- 1) Auxins:
 - · Effect elongation of cells in shoots/roots
 - Promote differentiation of vascular tissue
 - Promote development of fruit
 - Suppress lateral bud formation (Apical dominance)
- 2) Gibberellins
 - Promote elongation of cells in stem
- Stimulate flowering, seed germination, bud sprouting3) Cytokinins
 - · Promote cell division in plant tissues (e.g. bud sprouting)
 - Stimulate plant metabolism
 - Prevent plant aging (e.g. leaves)

Plant Hormones:

- 4) Ethylene (Gas at room temperature):Promotes fruit ripening
 - Stimulates cell walls to form
 abscission layers
- 5) Abscisic Acid:
 - Promotes survival in unfavorable environmental conditions
 - Maintains bud/seed dormance
 - Regulates stomata size

Apples give off ethylene gas naturally.

Hormonal Regulation of Plant Life Cycle:

Germination:

- A) Abscisic Acid (AA) maintains seed dormancy
 ♦ ↓ metabolism of embryo

 - Must be removed before germination can occur:
 Desert Plants Water (AA washed away)
 - > Temperate Plants Hard freeze (AA broken down)
- B) Gibberellin stimulates germination
 - Initiates synthesis of enzymes that release energy from endosperm / cotyledons

Hormonal Regulation of Plant Life Cycle:

Seedling Development:

- A) Auxin controls orientation of seedling
- Phototropism = Directional growth with respect to light
- Gravitropism = Directional growth with respect to gravity
 - Shoots stimulated to grow towards light (+ phototropism) and away from gravity (- gravitropism)
 - Roots stimulated to grow away from light (- phototropism) and towards gravity (+ gravitropism)
 - Shoot/Root growth depends on localized [Auxin]

Hormonal Regulation of Plant Life Cycle:

Maturation:

- A) Auxin and Cytokinin influence branch growth
 - Auxin alone maintains apical dominance
 - Produced in shoot tip
 - Inhibits growth of lateral buds
 - Auxin + cytokinin stimulates lateral buds
 - Cytokinin produced in roots
 - Bud sprouting progresses from bottom to top of stem

Hormonal Regulation of Plant Life Cycle:

Maturation:

- A) Auxin and Cytokinin influence branch growth
 - Auxin alone maintains apical dominance
 - Produced in shoot tip
 - · Inhibits growth of lateral buds
 - Auxin in the presence of cytokinin stimulates lateral buds
 Cytokinin produced in roots
 - · Bud sprouting progresses from bottom to top of stem
- B) Auxin stimulates root branching
 - · Stimulates pericycle cells to divide

Control of Flowering:

- The timing of flowering is critical (time for seed production)
- Reliable environmental cue = Length of Day
- Longer Days = Spring/Summer; Shorter Days = Fall/Winter

Plant Classifications:

- A) Day-neutral Plant:
- Flower when physiologically ready, regardless of day length B) Long-day Plant:
 - Flower when day longer than critical value
 - Spinach > 13 hours daylight
- C) Short-day Plant:
 - Flower when day shorter than critical value
 Cocklebur < 15 hours of daylight

Development of Fruit:

Developing seeds produce auxin and /or gibberellin

Stimulates ovary to produce fruit (cells multiply; store starch)

- Mature seed releases auxin surge
 - Triggers ethylene release (ripens fruit)
 Color changes from green to red / blue / yellow
 - Texture changes from hard to soft
 - Taste changes from bitter to sweet

Senescence and Dormancy:

- Autumn \rightarrow Uneaten fruit dropped; leaves shed
- Senescence = rapid aging (of leaves/fruits/flowers)
 - Culminates in formation of abscission layer

Hormonal Control:

- 1. Auxin/Cytokinin maintains fruit/leaves
- 2. Auxin levels drop off (leaf/fruit)
- 3. Ethylene released
 - Initiates enzyme production (petiole breakdown)
- 4. Abscisic acid enforces bud dormany

 What About Rapid Plant Responses?

 Answer: Some plant utilize 'nerve-like' impulses

 Image: Some plant utilize 'nerve-like' impulses
 </t